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Synchronization and desynchronization of weakly coupled oscillators

Christian Kurrer*
Department of Physics, Faculty of Science, Kyoto University, Kyoto 606, Japan

~Received 27 March 1996!

We study the dynamics of coupled nonlinear oscillators and investigate the conditions under which linear
coupling of these oscillators leads to either synchronization or desynchronization of the relative phases of
oscillations. This question has been previously addressed for infinitesimally small limit cycle oscillators, i.e.,
for oscillators in the vicinity of a Hopf bifurcation. In the present paper, we generalize these results by studying
limit cycle oscillators with finite size. This is achieved by expanding the dynamics of the nonlinear dynamical
systems in terms of deviations from a circular limit cycle of finite size. Taking into account only lowest-order
expansion terms, we analytically derive a condition for desynchronization which goes beyond the Benjamin-
Feir criterion obtained in the framework of the third-order Ginzburg-Landau theory.@S1063-651X~97!02408-2#

PACS number~s!: 05.45.1b
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The behavior of interacting limit cycle oscillators is fun
damental to a number of problems such as spatiotemp
pattern formation in chemical@1# and biological systems@2#,
and has recently seen renewed interest due to its pos
significance in the dynamics of cortical processes@3–6#. In
many cases, e.g., in the case of diffusive coupling betw
chemical oscillators, or in the case of resistive coupling
tween electrochemical oscillators, the coupling can be
sumed to be linear in concentration differences or volta
differences. Generally, it is assumed that such diffusive
teraction will eventually lead to synchronization of th
phases of such oscillators. However, it has been argued
fore that diffusive interaction can also lead to dephasing
oscillators, which then entails a variety of new dynamic
phenomena such as chemical turbulence@1# and intermit-
tency @7#.

The basic reason why dephasing can occur is that di
sive interaction between two limit cycle oscillators will i
general shift these two oscillators away from their lim
cycle, often such that one of the two oscillators will b
pushed to the inside of the limit cycle, while the other o
will be pushed to the outside of the limit cycle. If there is
strong radial gradient of the angular velocity, it can happ
that the lagging oscillator will be pushed into a region
slower angular velocity and will thus be further delayed in
oscillation phase.

In general@1#, at least for weakly coupled oscillators, th
interaction between two oscillators at phasesf1 andf2 can
be expressed in terms of a phase interaction functionG(df).
As a result of interaction between the oscillators, the ini
phase evolution equationsḟ151 and ḟ251 will be modi-
fied into

ḟ1511G~f12f2!, ~1!

ḟ2511G~f22f1!. ~2!
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A negative derivativeG8(df50),0 means that the oscilla
tors tend to synchronize, while a positive derivati
G8(df50).0 means that the oscillators tend to depha
One fundamental problem in the study of coupled oscilla
systems is the derivation of this phase interaction funct
from the dynamical equations describing the individual o
cillators and from the interaction term. In general@1#, the
phase interaction function can be expressed as

G~df!5
1

2pEf850

2p

Z~f8!p~f8,df!df8, ~3!

wherep(f8,df) describes the perturbation of the state ve
tor of an oscillator at phasef8 due to the interaction with
another oscillator at phasef81df, and the sensitivity vec-
tor Z(f8), standing perpendicular to the isochrones, d
scribes the phase change induced by a perturbation o
oscillator with phasef8. Generally, the functionsZ and p
depend not only on the phases of the coupled oscillators,
also on the coupled oscillators’ radial coordinates in ph
space. For weakly coupled oscillators, however, radial po
tion in phase space will in general not deviate very far fro
the limit cycle. One can then approximate the phase inte
tion function by evaluating the functionsZ(f8) and
p(f8,df) at the location of the limit cycle that has the sam
phasef8. By averaging the effect of the phase coupling ov
one limit cycle period in Eq.~3!, this so-called phase ap
proximation@1# then results in the phase interaction functi
G which is only a function of the phase differencedf.

In general, the integral in Eq.~3! has to be computed
numerically. Analytical solutions are so far available only f
the case of infinitesimally small limit cycles such as tho
that bifurcate out of a stationary point via a Hopf bifurcatio
@1#. In this paper, we want to discuss another limiting case
which theG function can be obtained analytically for finite
size limit cycles. The analytical solution will be useful t
shed more light on the general conditions required to ob
dephasing phase interaction.

Using polar coordinates (r ,u), a nonlinear dynamical sys
tem with a limit cycle parametrized byr LC(u) can be ex-
panded in the vicinity of this limit cycle up to first order i
@r 2r LC(u)# by
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ṙ 52@r 2r LC~u!#S m0

2
1(

l 51

`

mlsin~ lu1d l8!D , ~4!

u̇5v~u!1@r 2r LC~u!#S s0

2
1(

l 51

`

slsin~ lu1d l !D . ~5!

In order to illustrate the role of variations of tangent
phase velocity, we consider here the case wherer LC(u)51
and uniform angular velocityv(u)51 on the limit cycle and
uniform stability of the limit cycle@ml(u)52md l ,0#. We
then obtain a limit cycle oscillator system given by

ṙ 52m~r 21!, ~6!

u̇511~r 21!S s0

2
1(

l 51

`

slsin~ lu1d l !D . ~7!

Expressed in Cartesian coordinates (x,y), the linear inter-
action between the oscillators has a particularly simple fo

pCartesian~x1 ,y1 ,x2 ,y2!5S px~x1 ,y1 ,x2 ,y2!

py~x1 ,y1 ,x2 ,y2!
D

5S 2kx~x12x2!

2ky~y12y2!
D , ~8!

which for ky50 can be expressed in polar coordinates a

p~r 1 ,u1 ,r 2 ,u2!5S pr~r 1 ,u1 ,r 2 ,u2!

pu~r 1 ,u1 ,r 2 ,u2!
D

52kx~r 1cosu12r 2cosu2!S cosu1

2sinu1
D .

~9!

The angular component of the sensitivity vector

Z~r ,u!5S Zr~r ,u!

Zu~r ,u!
D ~10!

is simply

Zu~r 51,u!51, ~11!

while the radial component will be calculated in the follow
ing. In general, the radial component indicates how mu
phase shiftdf will be caused by a radial perturbation o
amplitudedr ,

Zr~r ,u!5
df

dr
. ~12!

If at time t0 we apply a radial perturbationdr to a limit cycle
oscillator at r 51 and u5u0, this perturbation will decay
exponentially as

r ~ t.t0!511dr e2m~ t2t0!. ~13!

The phase shift that the oscillator will have undergone can
calculated by integrating up how much the angular veloc
will differ from 1 while the oscillator returns to the limi
cycle
,

h

e
y

df5E
t0

`

~ u̇21!dt5E
t0

`

dre2m~ t2t0!

3S s0

2
1(

l 50

`

slsin@ l ~ t1u0!1d l # D dt. ~14!

Thus

Zr~f!5
df

dr
5

s0

2m
1(

l 51

`
sl

Am21 l 2
sinS lu01d l1arctan

2

mD .

~15!

In the limit of weak interactions, i.e., in the phase appro
mation, we can calculate the phase interaction functionG by
evaluatingZ andp for r 51 with f(r 51,u)5u,

G~df!5G r~df!1Gu~df!

5
1

2p R Zrprdf1
1

2p R Zupudf, ~16!

obtaining

Gu~df!52
1

2
kxsindf ~17!

and

G r~df!5
kxs2/4

Am2122F2~12cosdf!sinS d21arctan
2

mD
1sindf cosS d21arctan

2

mD G . ~18!

An important consequence of this result is that only t
second Fourier-expansion term of Eq.~7! has an influence on
the phase interaction function. To make the formula easie
read, the asymmetric part ofG r can be written as

G r
asym~df!5

kx

2
sindf h~s2 ,d2 ,m!, ~19!

where

h~s2 ,d2 ,m!5
s2

2Am214
cosS d21arctan

2

mD . ~20!

In the special case thatd21arctan(2/m)50, this function
can be simplified to

hS s2 ,d252arctan
2

m
,mD5

s2

2Am214
. ~21!

In the cased250, we obtain

h~s2 ,d250,m!5
s2

2m18/m
, ~22!

and in the limit of largem, we obtain

h~s2 ,d2 ,m@1!5
s2

2m
cosd2 . ~23!
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In any case, the asymmetric part of the total phase in
action function can be written as

Gasym~df!52
1

2
kx@12h~s2 ,d2 ,m!#sindf, ~24!

which, by analogous calculations for the casekyÞ0, takes
the more general form

Gasym~df!52
1

2
@~kx1ky!2~kx2ky!h~s2 ,d2 ,m!#sindf.

~25!

Thus the derivativeG8(df50) will have positive sign,
meaning that the oscillators will dephase, if

11
ky2kx

ky1kx
h~s2 ,d2 ,m!,0. ~26!

We now want to relate the above results with previo
results obtained in the framework of the Ginzburg-Land
~GL! theory. According to the GL theory@1#, in general,
limit cycle oscillators near a Hopf bifurcation point can b
described by a complex amplitude vectorW which evolves
in time according to

]W

]t
5~12 ic2uWu2!W1~11 ic1!~W2W8! ~27!

if such an oscillator is coupled diffusively to another osc
lator with amplitude vectorW8. ~The particular values ofc1
and c2 reflect the characteristics of the original limit cyc
system.! Further analysis@1# shows that diffusive interaction
will lead to dephasing of these coupled oscillators if

11c1c2,0, ~28!

which is known as the Benjamin-Feir~BF! criterion. It
should be stressed that the GL equations on which the
criterion is based represent a third order approximation of
dynamical system around its stationary point. From ther
follows that the BF criterion takes into account only terms
up to this order.

Let us now consider the dynamical system

ẋ52yv~x,y!2x
r 2~x,y!2r 0

2

2
m, ~29!

ẏ5xv~x,y!2y
r 2~x,y!2r 0

2

2
m, ~30!

with r (x,y)5Ax21y2 and

v~x,y!511
r 2~x,y!2r 0

2

2
s22xy. ~31!

This system contains nonlinear terms proportional tos2
which are of fifth order inx,y. For r 050, this system under
goes a supercritical Hopf bifurcation, while forr 051, this
system becomes equivalent up toO„(r 2r 0)2

… to the system
r-

s
u

F
e
it
f

ẋ52yv~x,y!2x
r ~x,y!21

r ~x,y!
m, ~32!

ẏ5xv~x,y!2y
r ~x,y!21

r ~x,y!
m, ~33!

with

v~x,y!511@r ~x,y!21#s2

2xy

r 2~x,y!
, ~34!

which corresponds to the system of Eqs.~6! and ~7! with
only the second Fourier-expansion term retained.

If we transform the system of Eqs.~29! and~30! into the
GL form, we obtain

c150. ~35!

In other words, the BF criterion, which holds exactly f
infinitesimal limit cycles, cannot be used reliably to deri
the condition for desynchronization for finite-size lim
cycles if the dynamical system contains nonlinear terms
higher order than 3. The fifth-order expansion terms t
were considered in Eqs.~29! and ~30!, however, do not
merely add numerical correction terms, but rather allow fo
different desynchronization mechanism with different sy
metry properties, as will be outlined in the following:

For phase oscillators which are coupled by linear attr
tive interaction, tangential perturbationspf(u) caused by
this interaction always contribute to synchronizing the os
lators. Radial perturbationspr(u) are proportional todr
}sin(2u); if there is a uniform phase velocity gradien
Zr(u)5const, periods where the oscillator is pushed into
region of faster phase velocity and periods in which the
cillator is pushed into a region of slower phase velocity w
exactly cancel out. In order for radial perturbations to lead
desynchronization, either the limit cycle has to be skewed
that ^dr &Þ0, or the phase gradientZr(u) has to have a Fou
rier component of the same periodicity sin(2u) as the radial
perturbation. These two cases are illustrated in Fig. 1. Fig
1~A! shows a skewed limit cycle with uniform phase grad
ent, for which the BF criterion@Eq. ~28!# gives the condi-
tions for desynchronization. Figure 1~B! shows a circular
limit cycle with varying phase velocity gradient, for whic
the condition for desynchronization was derived in t
present paper@Eq. ~26!#. In a general case, both th
skewedness of the limit cycle and the sin(2u) variation of the
phase velocity gradient may add up in order for radial p
turbations to dominate over synchronizing tangential per
bations.

Another important point to note is that terms that are
fifth order when one expands the dynamical system in
Taylor-expansion around the stationary point@Eqs.~29! and
~30!# are actually the leading-order Fourier-expansion ter
leading to desynchronization when one Fourier expands
dynamical system around a limit cycle of finite radius@Eqs.
~6! and ~7!#.

As a final illustration, let us consider the well-studie
Brusselator system@8#, defined by

ẋ5F~x,y!5A2~B11!x1x2y, ~36!
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ẏ5G~x,y!5Bx2x2y. ~37!

This system has a stationary point at (x0 ,y0)5(A,B/A), and
will undergo a Hopf bifurcation atBc511A2. Transforming
this dynamical system into Ginzburg-Landau form and p
forming and evaluating the Benjamin-Feir criterion yields@1#
that diffusive coupling via thex variable should lead to
dephasing if

a512
427A214A4

613A2 ,0 ~38!

or A.1.63 . . . . Since the Brusselator equations actua
only contain terms up to third order inx,y, the BF criterion
correctly predicts the conditions for dephasing even for v
ues of parameterB away from the immediate vicinity ofBc .

Now consider the modified Brusselator system

ẋ5F~x,y!2~y2y0!v~x,y!, ~39!

ẏ5G~x,y!1~x2x0!v~x,y!, ~40!

with

v~x,y!5@~x2x0!21~y2y0!2# s ~x2x0!~y2y0!.
~41!

For this modified system, numerical calculations f
B5Bc10.01, i.e., for limit cycles in the vicinity of the Hop

FIG. 1. ~a! Schematic drawing of an elliptical limit cycle sur
rounded by a phase flow field whose radial gradient does not
pend on the angle variableu. The BF criterion will correctly predict
that diffusive interaction in thex direction leads to dephasing if th
gradient is sufficiently strong.~b! Schematic drawing of a circula
limit cycle surrounded by a phase flow field whose radial gradien
proportional to sin2u. The effect of such variations in the angul
velocity gradient are not taken into account by the BF criterion
ce

e

-

l-

r

bifurcation, show that the gradient of the phase interact
function G8(0) changes sign atA51.63 for s50, as pre-
dicted by the BF criterion. Fors51,21, however, the sign
G8(0) changes atA52.29 andA51.38, respectively. Figure
2 shows G8(0) as a function ofB2Bc for A51.5 and
s521,0,1. We see that the BF criterion which predic
G8(0),0 holds for the immediate vicinity of the Hopf bi
furcation (B5Bc), but thatG8(0) can quickly change sign
for B.Bc .

Model systems such as the Brusselator are valuable s
they allow easy analytical manipulation while still allowin
one to illustrate a wide variety of basic phenomena of n
linear oscillator systems. The BF criterion owes much of
popularity to the fact that for such simple systems as
Brusselator system which only contain nonlinearities of up
third order, it holds exactly even for finite-size limit cycle
Limit cycle systems, such as the Hodgkin-Huxley neuro
oscillator that were derived to closely reproduce experim
tal observations, often contain nonlinearities of arbitrary
der. This paper has shown that the dynamics of coupled
cillators with finite-size limit cycles cannot be reliabl
predicted by the BF criterion obtained from the third-ord
GL theory for infinitesimal oscillators. We have writte
down an expansion scheme for finite-size limit cycle oscil
tors, and used the analytical solution of a low-order trun
tion to find a scenario in which linear coupling can lead
dephasing. We hope that the present investigations will
courage other studies to analytically investigate the prop
ties of finite size limit cycle oscillators rather than restrictin
analytical studies to infinitesimal limit cycle oscillators onl

The author acknowledges stimulating discussions with
Kuramoto. The author was supported by the European Un
Science and Technology Fellowship Program in Jap
~STF8!.
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FIG. 2. Gradient of the phase interaction functionG8(0) as a
function of B2Bc for A51.5 ands521,0,1.
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