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Synchronization and desynchronization of weakly coupled oscillators
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We study the dynamics of coupled nonlinear oscillators and investigate the conditions under which linear
coupling of these oscillators leads to either synchronization or desynchronization of the relative phases of
oscillations. This question has been previously addressed for infinitesimally small limit cycle oscillators, i.e.,
for oscillators in the vicinity of a Hopf bifurcation. In the present paper, we generalize these results by studying
limit cycle oscillators with finite size. This is achieved by expanding the dynamics of the nonlinear dynamical
systems in terms of deviations from a circular limit cycle of finite size. Taking into account only lowest-order
expansion terms, we analytically derive a condition for desynchronization which goes beyond the Benjamin-
Feir criterion obtained in the framework of the third-order Ginzburg-Landau thE®i{63-651X97)02408-2

PACS numbd(s): 05.45+b

The behavior of interacting limit cycle oscillators is fun- A negative derivativd™’' (6¢=0)<0 means that the oscilla-
damental to a number of problems such as spatiotemporébrs tend to synchronize, while a positive derivative
pattern formation in chemic4l] and biological systemi®], TI''(8¢=0)>0 means that the oscillators tend to dephase.
and has recently seen renewed interest due to its possib@ne fundamental problem in the study of coupled oscillator
significance in the dynamics of cortical procesg&s6]. In  systems is the derivation of this phase interaction function
many cases, e.g., in the case of diffusive coupling betweefrom the dynamical equations describing the individual os-
chemical oscillators, or in the case of resistive coupling be<illators and from the interaction term. In genefal, the
tween electrochemical oscillators, the coupling can be asphase interaction function can be expressed as
sumed to be linear in concentration differences or voltage 1 2
differences. Generally, it is assumed that such diffusive in- I / / ,
teraction will eventually lead to synchronization of the F(5¢)—27TL§/OZ(¢ IP($',54)de’, @
phases of such oscillators. However, it has been argued be-
fore that diffusive interaction can also lead to dephasing ofvherep(¢’,8¢) describes the perturbation of the state vec-
oscillators, which then entails a variety of new dynamicaltor of an oscillator at phaseé’ due to the interaction with
phenomena such as chemical turbulefite and intermit-  another oscillator at phasg’ + 8¢, and the sensitivity vec-
tency[7]. tor Z(¢'), standing perpendicular to the isochrones, de-

The basic reason why dephasing can occur is that diffuscribes the phase change induced by a perturbation of an
sive interaction between two limit cycle oscillators will in oscillator with phasep’. Generally, the functiong and p
general shift these two oscillators away from their limit depend not only on the phases of the coupled oscillators, but
cycle, often such that one of the two oscillators will be also on the coupled oscillators’ radial coordinates in phase
pushed to the inside of the limit cycle, while the other onespace. For weakly coupled oscillators, however, radial posi-
will be pushed to the outside of the limit cycle. If there is ation in phase space will in general not deviate very far from
strong radial gradient of the angular velocity, it can happerthe limit cycle. One can then approximate the phase interac-
that the lagging oscillator will be pushed into a region oftion function by evaluating the function&(¢’') and
slower angular velocity and will thus be further delayed in itsp(¢’,5¢) at the location of the limit cycle that has the same
oscillation phase. phaseg’. By averaging the effect of the phase coupling over

In general[1], at least for weakly coupled oscillators, the one limit cycle period in Eq(3), this so-called phase ap-
interaction between two oscillators at phaggsand ¢, can  proximation[1] then results in the phase interaction function
be expressed in terms of a phase interaction fundiigsy). I" which is only a function of the phase differenée.

As a result of interaction between the oscillators, the initial In general, the integral in Eq3) has to be computed
phase evolution equations;=1 and ¢,=1 will be modi-  numerically. Analytical solutions are so far available only for
fied into the case of infinitesimally small limit cycles such as those
that bifurcate out of a stationary point via a Hopf bifurcation
. [1]. In this paper, we want to discuss another limiting case in
P1=1+T(p1— ¢5), (1) which theI” function can be obtained analytically for finite-
size limit cycles. The analytical solution will be useful to
) shed more light on the general conditions required to obtain
G=1+T (o~ d1). (2 dephasing phase interaction.
Using polar coordinates (6), a nonlinear dynamical sys-
tem with a limit cycle parametrized by -(6#) can be ex-
*Present address: CPHT, Ecole Polytechnique, F-91128 Papanded in the vicinity of this limit cycle up to first order in
aiseau, France. Electronic address: kurrer@orphee.polytechniquelff —r c(6)] by
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+E mysin(1 6+ 8)) |,

r=—[r—rc(6)] 4 Sp= t0(@9—1)dt=f Sre~mt-to)

to

(5) (14)

6= w(0)+[r—r c(6)] +E sisin(lo+4)) |.

S o)
X 5°+2 sisin[1(t+ 6p)+ 81| dt
1=0

In order to illustrate the role of variations of tangential Thus
phase velocity, we consider here the case whegéd)=1

) . - 2
and uniform angular velocity(6) =1 on the limit cycle and 7 - + sin 1 6.+ & + arctan—| .
uniform stability of the limit cycle[m;(6)=2ms, o]. We (4)= 5f |E Jym 2 12 or m
then obtain a limit cycle oscillator system given by (15
r= -m(r—1), (6) In the limit of weak interactions, i.e., in the phase approxi-

mation, we can calculate the phase interaction fundfidsy
evaluatingZ andp for r=1 with ¢(r=1,6)=0,

I'(6¢)=T(6¢)+Ty(5¢)

6=1+(r—1) +Z s;sin(l1 6+ 6)) |. 7

Expressed in Cartesian coordinata&sy(), the linear inter- 1 1
action between the oscillators has a particularly simple form, =5 % Zipdo+5— 3§ Zopydg, (16

px(leyl,X2,Y2)> .
(X1,Y1,%0, ):( obtaining
pCarteS|a|€ 1.Y1,X2,Y2 py(xlyylrxzvyz) .
— Ky (X1 —X5) I'y(8¢)=—5kisind¢ 17
= , )
_ky(yl_yZ)
and
which for k,=0 can be expressed in polar coordinates as s/al )
xS2 .
P(ry,01,r5,65) I'(6¢)=———| —(1—cosd¢)sin| 5,+arctan—
p(r1161!r2102):( nonT e ) vm +22_ m
pﬁ(r11911r2102) 2
cos, +sind¢ cos( S, +arctan— } (18
= —ky(rscosty —rc080;)| _ m
- 1

An important consequence of this result is that only the
9 . . :

second Fourier-expansion term of E@) has an influence on
The angular component of the sensitivity vector the phase interaction function. To make the formula easier to
read, the asymmetric part of, can be written as

Z (zr(r,e)) 10 k
r’a = .
(r.9) Z,(r,0) (10 rasym 5¢)=§sm5¢ h(s,,8,,m), (19
is simpl
'S simply where

Z,(r=1,0)=1, (11) ,

S,

while the radial component will be calculated in the follow- h(sz,82,m)= 2yt a COS( Sptarctan—|. (20

ing. In general, the radial component indicates how much
phase shifté¢ will be caused by a radial perturbation of |, ihe special case thas,+arctan(2m)=0, this function

amplitudesr, can be simplified to
o
=_" 2 S
Z:(r,0) or’ (12 h 52,52=—arctan—,m> =2 (21
m 2\m?+4

If at time ty we apply a radial perturbatiofr to a limit cycle
oscillator atr=1 and 8= 6, this perturbation will decay In the cases,=0, we obtain
exponentially as S,

F(t>tg)=1+or e Mt (13) h(s2,0=0m)= 5 gim (22

The phase shift that the oscillator will have undergone can band in the limit of largem, we obtain

calculated by integrating up how much the angular velocity

will differ from 1 while the oscillator returns to the limit h(s,,5 m>1)=icosﬁ 23)
cycle 272 2
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In any case, the asymmetric part of the total phase inter-

action function can be written as

rasyMse)=— %kx[l—h(sz,éz,m)]sin&ﬁ, (24

which, by analogous calculations for the cdge-0, takes
the more general form

1
rasymese)=— E[(kx+ ky) — (kx—ky)h(sz,8,,m)]sind¢.
(29

Thus the derivativd™’' (§¢=0) will have positive sign,
meaning that the oscillators will dephase, if

Ky — Ky

Tk,

h(sy,8,,m)<0. (26)

3801
x= —yw(x,y)—x%m. (32)
y=xw<x,y>—y%m, (33

with
w(X.y)=1+[r(x,y)—1]Sz;z%, (34)

which corresponds to the system of E@8) and (7) with
only the second Fourier-expansion term retained.

If we transform the system of Eq&9) and(30) into the
GL form, we obtain

C]_:O. (35)

In other words, the BF criterion, which holds exactly for

We now want to relate the above results with previousinfinitesimal limit cycles, cannot be used reliably to derive
results obtained in the framework of the Ginzburg-Landaiihe condition for desynchronization for finite-size limit

(GL) theory. According to the GL theorjl], in general,

cycles if the dynamical system contains nonlinear terms of

limit cycle oscillators near a Hopf bifurcation point can be higher order than 3. The fifth-order expansion terms that

described by a complex amplitude veciarwhich evolves
in time according to

i : 2 ; '
W=(1—ICZ|W| YW+ (1+ic)(W—W') (27)

were considered in Eqg29) and (30), however, do not
merely add numerical correction terms, but rather allow for a
different desynchronization mechanism with different sym-
metry properties, as will be outlined in the following:

For phase oscillators which are coupled by linear attrac-
tive interaction, tangential perturbations,(#) caused by

if such an oscillator is coupled diffusively to another oscil- this interaction always contribute to synchronizing the oscil-

lator with amplitude vectoW'’. (The particular values of;

lators. Radial perturbationp,(6) are proportional todr

and c, reflect the characteristics of the original limit cycle <Sin(29); if there is a uniform phase velocity gradient
system) Further analysi§1] shows that diffusive interaction Zr(8)=const, periods where the oscillator is pushed into a

will lead to dephasing of these coupled oscillators if
1+c4C,<0, (28

which is known as the Benjamin-FeiBF) criterion. It

region of faster phase velocity and periods in which the os-
cillator is pushed into a region of slower phase velocity will
exactly cancel out. In order for radial perturbations to lead to
desynchronization, either the limit cycle has to be skewed so
that(r)+0, or the phase gradiei} () has to have a Fou-

should be stressed that the GL equations on which the BFer component of the same periodicity sifl{2as the radial
criterion is based represent a third order approximation of thgerturbation. These two cases are illustrated in Fig. 1. Figure
dynamical system around its stationary point. From there ifl(A) shows a skewed limit cycle with uniform phase gradi-
follows that the BF criterion takes into account only terms ofent, for which the BF criterioEq. (28)] gives the condi-

up to this order.
Let us now consider the dynamical system

. r2(x,y)—r2
x=—yw<x,y>—x(+)°m, (29
: r2(x,y)=ro
y=xe(xy) -y ——z——m, (30
with r(x,y) = x?+y? and
r2(x,y)—r3
o(X,y)=1+ %sﬂxy. (3D

This system contains nonlinear terms proportional sto
which are of fifth order irx,y. Forry=0, this system under-
goes a supercritical Hopf bifurcation, while fop=1, this

system becomes equivalent up@g(r —r,)?) to the system

tions for desynchronization. Figure(B) shows a circular
limit cycle with varying phase velocity gradient, for which
the condition for desynchronization was derived in the
present papefEg. (26)]. In a general case, both the
skewedness of the limit cycle and the siéi(2ariation of the
phase velocity gradient may add up in order for radial per-
turbations to dominate over synchronizing tangential pertur-
bations.

Another important point to note is that terms that are of
fifth order when one expands the dynamical system in a
Taylor-expansion around the stationary pdiBgs.(29) and
(30)] are actually the leading-order Fourier-expansion terms
leading to desynchronization when one Fourier expands the
dynamical system around a limit cycle of finite rad[lgs.

(6) and(7)].

As a final illustration, let us consider the well-studied

Brusselator systerf8], defined by

x=F(x,y)=A—(B+1)x+x3, (36)
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(o)

B-Bc

-1 s=1

(a)

. : _— . FIG. 2. Gradient of the phase interaction functibh(0) as a
FIG. 1. (a) Schematic drawing of an elliptical limit cycle sur-
@ g b Y function of B—B, for A=1.5 ands=—-1,0,1.

rounded by a phase flow field whose radial gradient does not de-
pend on the angle variable The BF criterion will correctly predict bifurcation, show that the gradient of the phase interaction
that diffusive interaction in the direction leads to dephasing if the ¢, tion T''(0) changes sign aA=1.63 for s=0, as pre-
gradient is sufficiently strongb) Schematic drawing of a circular dicted by the BF criterion. Fos=1 _'1 however, the sign

limit cycle surrounded by a phase flow field whose radial gradient is, - . . .
proportional to sin@. The effect of such variations in the angularsg g?}g)vc\:g?q%gi a:S_s'?Sni?iﬁ_Olfgf’éeigfcz\f?s':f#ée
[+ - .

velocity gradient are not taken into account by the BF criterion. _C. . .
9 y s=-1,0,1. We see that the BF criterion which predicts

: 5 I'’(0)<0 holds for the immediate vicinity of the Hopf bi-
y=G(Xy)=Bx=X7y. (37 furcation B=B,), but thatT"’(0) can quickly change sign
for B>B,.

Model systems such as the Brusselator are valuable since
they allow easy analytical manipulation while still allowing
one to illustrate a wide variety of basic phenomena of non-
linear oscillator systems. The BF criterion owes much of its
popularity to the fact that for such simple systems as the

This system has a stationary point & (yo) = (A,B/A), and
will undergo a Hopf bifurcation aB.=1+ A2. Transforming
this dynamical system into Ginzburg-Landau form and per
forming and evaluating the Benjamin-Feir criterion yied$
that diffusive coupling via thex variable should lead to

dephasing if Brusselator system which only contain nonlinearities of up to
4—7A2+ 4A% third order, it holds exactly even for finite-size limit cycles.

a=1-—p"mir—<0 (38 Limit cycle systems, such as the Hodgkin-Huxley neuronal

oscillator that were derived to closely reproduce experimen-

or A>1.63. ... Since the Brusselator equations actuallyt@l observations, often contain nonlinearities of arbitrary or-

only contain terms up to third order iy, the BF criterion ~ der. This paper has shown that the dynamics of coupled os-
correctly predicts the conditions for dephasing even for val€illators with finite-size limit cycles cannot be reliably

ues of paramete® away from the immediate vicinity d8.. ~ Predicted by the BF criterion obtained from the third-order
Now consider the modified Brusselator system GL theory for infinitesimal oscillators. We have written
down an expansion scheme for finite-size limit cycle oscilla-
x=F(X,y)— (Y= Yo)@(X,y), (390  tors, and used the analytical solution of a low-order trunca-
tion to find a scenario in which linear coupling can lead to
y=G(X,y) + (X—Xo) @(X,Y), (40) dephasing. We hope that the present investigations will en-
courage other studies to analytically investigate the proper-
with ties of finite size limit cycle oscillators rather than restricting

analytical studies to infinitesimal limit cycle oscillators only.

X,¥)=[(X—X0)2+ (Y—Y0)2]S(X—Xo)(Y— Vo).
oY) =I 0" (Y= Yo"l s 0/ (y=Yo) The author acknowledges stimulating discussions with Y.

Kuramoto. The author was supported by the European Union
For this modified system, numerical calculations forScience and Technology Fellowship Program in Japan
B=B.+0.01, i.e., for limit cycles in the vicinity of the Hopf (STF8.
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